WHAT GOES AROUND COMES AROUND

MEHVISH SALEEM

AUTHORS

Joseph Hellerstein

Michael Stonebraker

CONTENT

- Introduction
- Hierarchical IMS Era
- Network CODASYL Era
- Relational Era
- Comparison
- Conclusion

INTRODUCTION

BACKGROUND

- Provides a summary of 35 years of data model proposals
- Discusses data models divided into 9 eras
- Talks about the pros, cons and lessons learned from each era
- Example used:

```
Supplier (sno, sname, scity, sstate)
Part (pno, pname, psize, pcolor)
Supply (sno, pno, qty, price)
```

IMS (INFORMATION MANAGEMENT SYSTEM)

IMS ERA

- Late 1960's and 1970's
- Hierarchical data model: a collection of instances of record types
- Uses a "record-at-a-time" language called DL/I for data manipulation
- Stored sequentially or through hashing

TWO HIERARCHICAL ORGANIZATIONS

PROS AND CONS

- Simple
- Some support for logical data independence

- Data Redundancy
- Child cannot exist without parent
- Lack of physical data independence

CODASYL (COMMITTEE ON DATA SYSTEMS LANGUAGES)

CODASYL ERA

- Reports released in 1970s
- A directed graph model
- Database consists of a collection of record and set instances of the set type
- Record-at-a-time data manipulation language

A CODASYL DIRECTED GRAPH

PROS AND CONS

- Flexible
- No redundancy
- Can deal with corner cases

- Complex model
- Long long load times due to the graph structure
- Poorer physical and logical independence

RELATIONAL

HOW DOES IT WORK?

- Proposed in 1970 by Ted Codd
- Data structured as relations sets of tuples
- Uses a set-at-a-time query language

sno	sname	scity	sstate
16	GS	Boston	MA
24	SS	Detroit	Mi

sno	pno	qty	price
16	27	100	\$20.00
24	42	1000	\$0.08

pno	pname	psize	pcolor
27	Saw	7	silver
42	bolts	12	gray

RELATIONAL DATABASE

THE GREAT DEBATE

- A debate between Tedd Codd and Charlie Bachman (inventor of the network model) lasted through most on 1970s
- SIGFIDET '74
- Conclusion left on the commercial marketplace

COMPARISON

- Arguments against CODASYL:
 - Too complex
 - No acceptable data independence
 - Not flexible enough
- Arguments against Relational:
 - Difficult to understand the new languages
 - Might not be possible to implement the model efficiently

SO WHO WON?

- VAX (32-bit minicomputers) supported relational and mainframes supported non-relational
- IBM announced dual support for IMS and DB/2 (an early relational database)
- SQL established as the standard relational database language

WHAT DID WE LEARN?

- The importance of data independence
- Tree structured models are restrictive
- Optimization of record-at-a-time queries is hard
- Directed graphs are more flexible than hierarchies but more complex
- Set-a-time languages offer more data independence
- Technical debates are usually settled by market giants

THANK YOU!